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Abstract

A new model of symbol grounding is presented, in which the struc-
tures of natural language, logical semantics, perception and action are
represented categorically, and symbol grounding is modeled via the com-
position of morphisms between the relevant categories. This model gives
conceptual insight into the fundamentally systematic nature of symbol
grounding, and also connects naturally to practical real-world Al systems
in current research and commercial use. Specifically, it is argued that
the structure of linguistic syntax can be modeled as a certain asymmetric
monoidal category, as e.g. implicit in the link grammar formalism; the
structure of spatiotemporal relationships and action plans can be modeled
similarly using ”image grammars” and ”action grammars”; and common-
sense logical semantic structure can be modeled using dependently-typed
lambda calculus with uncertain truth values. Given these formalisms, the
grounding of linguistic descriptions in spatiotemporal perceptions and co-
ordinated actions consists of following morphisms from language to logic
through to spacetime and body (for comprehension), and vice versa (for
generation). The mapping is indicated between the spatial relationships
in the Region Connection Calculus and Allen Interval Algebra and corre-
sponding entries in the link grammar syntax parsing dictionary. Further,
the abstractions introduced here are shown to naturally model the struc-
tures and systems currently being deployed in the context of using the
OpenCog cognitive architecture to control Hanson Robotics humanoid
robots.

1 Introduction

The concept of ”symbol grounding” — the formation and manipulation of cor-
respondences between linguistic tokens used by an agent, and perceptions and
actions in the agent’s physical environment — was originally formulated by Searle
Sea80] and Newell nearly four decades ago, and was first crisply sum-
marized and brought to the scientific community’s broad attention by Harnad



in 1990 [Har90]. By now the notion is no longer so controversial, and it is fairly
widely accepted that symbol grounding is, in some sense, a critical aspect of
creating Al systems that use natural language effectively and with full under-
standing [Canll]. The concept is especially firmly embraced in the realm of
cognitive robotics [CLW13|, where one confronts the practical problem of map-
ping the linguistic tokens implicit in the robot’s speech output and input, with
the continuous-variable patterns of vision, audition, haptics, kinesthetics and
movement that the robot experiences. For cognitive roboticists experimenting
with linguistically interacting robots, symbol grounding is not just a puzzle of
philosophy and cognitive science, but an everyday hands-on R&D struggle.

In neither cognitive science nor cognitive robotics, however, is there currently
a clear consensus on what ”symbol grounding” actually means, when one gets
beyond the general concept and digs into the details. Clearly, symbol ground-
ing is more than just mapping discrete words onto classes of objects or events
— e.g. the word "apple” onto observations of apples, or the word ”walk” onto
observations of entities walking. As Cangelosi has pointed out [Canll], the next
frontier in understanding symbol grounding appears to be coming to grips with
its systematic nature, with the way in which networks of linguistic relationships
are grounded by networks of relationships in the non-linguistic world. A recent
European government funded research initiative pursues precisely this topic E[,
with a team combining expertise in robotics, cognitive science and computa-
tional linguistics, and a focus on grounding appropriate linguistic expressions in
affordances pertaining to actions in simple simulation environments.

Here we model the systematic nature of symbol grounding in a novel way,
using the framework of category theory to represent the abstract structures im-
plicit in logic, language, sensory data (visual in particular) and motor actions,
and to explore the sorts of mappings that exist between these different domains.
Our closest predecessor in this investigation is Goguen [Gog05], who noted the
relevance of category-theoretic notions for modeling the mappings between lin-
guistic domains and concrete grounding domains. However, this interesting
prior work remained at a very theoretical level, whereas our goal here is to use
these abstract notions to model our current practical work on computational
language processing, sensory data processing and robot movement control.

The systematic nature of symbol grounding is something we face quite con-
cretely in our work using the OpenCog cognitive architecture to control Hanson
Robotics humanoid robots (focusing mainly on face, head and neck control at
the moment, though we have also worked with robots with torsos and complete
walking bodies) [GHI4]. Making spoken natural language dialogue, machine
vision and audition and coordinated physical action work effectively in a real-
world social robotics context involves a great variety of complex details, and it
is valuable to have a clear overarching framework in which to position all the
details.

Building on prior work by ourselves and others in multiple relevant domains,
we argue here that:

Thttp://wuw.chistera.eu/projects/reground
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e the crux of syntactic structure, as modeled in link grammar or pregroup
grammar, is captured by modeling syntax as certain asymmetric monoidal
categories

e logical semantics is adequately captured via dependently typed lambda
calculus with two-valued truth values, which then corresponds to a certain
locally closed Cartesian category

e perceptual structure may be captured by ”image grammars” and their gen-
eralizations, which can be modeled via the same categories used to model
linguistic syntax, with the role of ”parts of speech” played by ”types of
object or identified object-part.” For instance, these perceptual grammars
can be formed, in practice, via pattern mining on the states of deep neural
networks.

e the structure of movement-control actions may be modeled similarly to
perceptions,with the role of ”parts of speech” played by ”animations” —
coherent movement-patterns involving one or more actuators

Given these formalizations, we show that symbol grounding can be effectively
modeled via morphisms from natural language syntax to logic, and then from
logic to perception or action.

A key point is that we are modeling symbol grounding not merely as a
collection of mappings from individual words or linguistic relationships onto
individual classes of percepts or actions, or individual relations therebetween.
Rather, we are modeling symbol grounding as a systematic mapping from the
algebra of language into the algebra of logic, and then from the algebra of
logic into the algebras of perception and action. By composing these morphic
mappings, one grounds language in perception and actions, and generally maps
perception, action, language and logic into each other.

It also is possible, using these tools, to model grounding of language directly
in perception and action, without need for the intervening medium of logic. We
suggest that this sort of grounding does in fact occur in some cases. However,
we suggest that in the majority of cases, if an agent needs to carry out complex
activities, the (explicit or implicit) use of logical algebra as a connecting medium
between perception, action and language will be the most effective strategy
in practice. This is in part because logical algebra contains powerful means
for abstraction and generalization, so that including the power of logic in the
morphism pipeline provides a clear route for a system to extend its already-
learned perceptual, movement and language procedures to new and different
situations.

From a theoretical linguistics view, the perspective presented here repre-
sents a sort of blend of the Saussurean view of linguistic meaning as comprised
of language-internal relationships [JdS13|, and the view of linguistic meaning
as comprised of mappings between linguistic entities and external entities such
as physical or social phenomena [Tom03|. Linguistic meaning is proposed to



have to do with mappings between the system of language-internal relation-
ships, and the system of relationships between entities in the world. At a broad
level there is resonance between this perspective and, for instance, systemic-
functional grammar [HMO04, MX16], but the particulars of the approach we
pursue here are quite different.

2 A Categorial View of Natural Language Com-
prehension and Generation

The first step toward articulation of the mappings presented here, is the interpre-
tation of natural language syntax as categorial in nature. Such an understand-
ing has been provided by the work of Lambek and colleagues [LamO08| [Lam06],
who have outlined ”pregroup grammars” that appear to explain phenomena of
English syntax and that are also equivalent to asymmetric monoidal categories.

There have not yet been any practical computational linguistic systems based
explicitly on pregroup grammars. However, Linas Vepstas EIEIhaS made the ob-
servation that there is an elementary equivalence between pregroup grammars
and the link grammar, a grammatical framework conceived by Sleator and Tem-
perley [ST93], which comes along with a rather thorough hand-coded lexicon for
English, and useful though less complete lexicons for several other languages.
There is current research work on replacing these hand-coded lexicons with com-
parable lexicons based on unsupervised learning (if successful, this will yield
lexicons with even broader coverage) [VG14].

2.1 From Link Grammar to Pregroup Grammar

Link grammar is closely related to standard dependency grammars, but also has
some significant differences. The essential idea of link grammar is that each word
comes with a feature structure consisting of a set of typed connectors. Parsing
consists of matching up connectors from one word with connectors from another.

For simplicity we will restrict attention to English in our discussion here,
but the link grammar also covers a broad variety of languages. In particular,
while the examples given here involve connectors at the word level, it can also be
extended to languages with concatenative morphology, via positing connections
at the morpheme level (see the link grammar dictionaries for e.g. Hebrew and
Turkish for examples).

Consider the following example, drawn from the classic paper “Parsing with
a Link Grammar” by Sleator and Temperley [ST93]:

The cat chased a snake.

The link grammar parse structure for this sentence is:

%http://www.abisource.com/projects/link-grammar/dict/introduction.html
Shttps://en.wikipedia.org/wiki/Link_grammar
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LEFT-WALL the cat.n chased.v a snake.n .

It turns out to be useful to imagine that there was a dummy word at the begin-
ning of every sentence, denoted "LEFT-WALL”; this is used, e.g., to identify
the head of a sentence. There is also a corresponding "RIGHT-WALL,” which is
used only for certain punctuation phenomena. In most sentences, we use a spe-
cial "RW” connector to simply connect punctuation and the ”RIGHT-WALL”.

The “link grammar dictionary” contains connectors associated with all com-
mon English words. The notation used to describe feature structures in this
dictionary is quite simple. Different kinds of connectors are denoted by letters
or pairs of letters like S or SX. Then if a word W1 has the connector S+, this
means that the word can have an S link coming out to the right side. If a word
W2 has the connector S-, this means that the word can have an S link coming
out to the left side. In this case, if W1 occurs to the left of W2 in a sentence,
then the two words can be joined together with an S link.

The features of the words in our example sentence, as given in the classic
S&T paper, are

‘Words Formula

a, the D+

snake, cat D- & (O- or S+)
Chased S- & O+

The nature of linkage imposes constraints on the variable assignments; for in-
stance, if “the” is assigned as the value of the “word that links to D-” feature
of “snake” , then “snake” must be assigned as the value of the “word that links
to D+” feature of “the.”

The rules of link grammar impose additional constraints — i.e. the planarity,
connectivity, ordering and exclusion metarules described in Sleator and Tem-
perley’s papers. In essence, what these constraints mean is that a link parse
consists of a set of arcs drawn over a sentence, where each arc leads from one
word to another, the set of words and arcs forms a connected graph, and no two
arcs cross each other when drawn in the plane.

There may be unusual cases where it is desirable to allow links to cross,
and to encompass such cases one can introduce a broader constraint called
”landmark transitivity,” as explored in Hudson’s ”word grammar” framework
[Hud07]. However, this is still linguistically a bit controversial, and so we will
ignore this from the standpoint of this paper, and stick with the "no links cross”
constraint. Landmark transitivity can be handled via a slight extension of the
formalism presented here, which is left as an exercise for the reader.

To see how link grammar is equivalent to a categorial perspective on gram-
mar, consider that each word can be viewed as a transformation that maps



(usually other) words into phrases. So for instance if we have

+-— S+ —-
|
dogs

i.e. 7dogs” with an S connector on the right — this is a transformation that
transforms any word with an S connector on its left into a phrase. We may have

-— 8- ——+
|
bark

in which case if we let "dogs” transform ”bark”, it will transform it into

+-- 8§ ———+
| |
dogs bark

i.e. into the phrase ”dogs bark.”

From here it is a simple step to consider the process of connecting a word
to another word or phrase as a product, in the categorial sense. Then the entity
”dog” as an entity to connect to the left of another word or phrase is the right
adjoint of ”dog”; and the entity "dog” as an entity to connect to the right of
another word, is the left adjoint of ”dog”, and so we have a monoidal category.
Which is evidently an asymmetric monoidal category — because grammar is left-
right asymmetric: a word’s potential syntactic connections on the left are not
the same as its potential syntactic connections on the right. That is, the left and
right going connectors in the link grammar dictionary correspond to left and
right adjuncts in the categorial representation; so that the asymmetry at the
categorial level simply reflects the left-right nature of written language, which
reflects the embedding of language in one-dimensional time

To model practical parsing using this framework, one can introduce the no-
tion of a ”constrained transformation system” — where we have a certain set
of objects, and then a certain set of transformations, and a set of constraints
on which transformations can be used together. The objects plus transfor-
mations can be thought of as a category. We then have a set of disjunctions
among (object, transformation) pairs, indicating that if e.g. (O1,7T1) is in the
transformation system, then (02,72) cannot be. These disjunctions serve as
constraints.

For instance, the disjunctive constraints in the link grammar dictionary for
"bark” would contain the restriction that if we apply the word-instance ”dogs”
to the word-instance ”bark” as indicated above, we can’t also apply the same
word-instance ”dogs” to the word-instance me” (as in the case ”This sentence
dogs me” ).



2.2 A Categorial View of Logical Semantics for Natural
Language

Semantics, like syntax, can also be modeled categorically. There are many dif-
ferent semantic frameworks to choose from; for the sake of discussion here, we
will choose the framework that is currently in practical use in the OpenCog Al
framework, operating together with the link grammar formalism. This frame-
work is called Probabilistic Logic Networks [GIGHO0S], and from a mathematical
perspective it can be viewed as predicate logic augmented with a labeling of
terms and predicates with uncertain truth value objects representing imprecise
probabilities. In the simplest case the truth value objects consist of (s, n) pairs,
where s connotes a probability and n connotes a nonnegative ”weight of evi-
dence”. These pairs are imprecise probabilities a la Walley [Wal91l]; extended
versions involve indefinite or distributional probabilities [IGFQ07], but these ex-
tensions don’t change the basic categorical picture presented here so can be
ignored for the present.

As articulated in |[GIGHO§|, PLN is not fully formalized but only semi-
formalized. From a formal perspective, PLN can be viewed as building on typed
lambda calculus, adding onto it imprecise-probabilistic truth values attached to
expressions. In its full generality PLN should be viewed as building on lambda
calculus with dependent types.

Just as simply typed lambda calculus corresponds to closed Cartesian cate-
gories El; similarly, lambda calculus with dependent types is known to correspond
to a (locally closed) cartesian category. H An arrow F': X — Y can be inter-
preted as a variable substitution and as a family of types indexed over Y in the
type theory. Basically, the category associated with a typed lambda calculus has
objects equal to the types, and morphisms equal to type-inheritance relations
between the types.

Note that unlike the asymmetric monoidal category used to model syntax,
here we have a symmetric category modeling logic expressions. This is, crudely,
because logic doesn’t care about left versus right, whereas link grammar (and
syntax in general) does. Logic cares about predicate versus argument; but
syntax has forms in which predicate comes after argument and forms in which
predicate comes before argument, whereas logic does not contain this distinction.

2.3 Mapping Language to Logic

Language and logic, according to the formalisms summarized above, are formal
systems with different, but closely related and in some senses parallel struc-
ture. One way to model the interpretation of language is in terms of formal
mappings into logical formal structures from linguistic formal structures, and
corresponding mappings into logical formal structures from formal structures
characterizing nonlinguistic domains to which language refers.

4http://www.goodmath.org/blog/2012/03/11/interpreting-lambda-calculus-using-closed-cartesian-categories/
5 A category C is locally Cartesian closed, if all of its slices C/X are Cartesian closed (i.e.
if it’s Cartesian closed for each parameter value used in a parameter-dependent type)
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There exist multiple formalisms described in the research literature, and
implemented in software, for mapping linguistic structures such as syntactic
parse trees into logical formalisms. Two relatively well fleshed out examples
are Fluid Construction Grammars [SdB06] and the language processing front
end of the (closed-source and proprietary) Cyc Al system [LG90]. Here we will
describe the syntax-to-logical-semantics mapping system we have developed in
the context of the OpenCog software system, which transforms link grammar
parses of sentences into sets of logic expressions consistent with the Probabilistic
Logic Networks framework.

In the OpenCog software system, this mapping from syntax to logic is con-
tained in a series of two rule systems called RelEx and RelEx2Logic. RelEx
and RelEx2Logic, as a pipeline, maps syntactic structures into logical struc-
tures. Currently these rule systems comprise hand-coded rules; work is under-
way aimed at replacing these with rules obtained via supervised learning on
parallel corpora involving the constructed logical language Lojban [Cow16] and
natural languages.

2.3.1 RelEx

RelEx Etakes as input the link parses of sentences, and produces as output
simplified representations of the grammatical structure of input sentences. Some
surface details of grammatical structure are normalized.

For example, the current version of RelEx, applied to the standard example
”The cat chased a snake.” given above, produces the output:

Dependency relations:

_obj(chase, snake)
_subj(chase, cat)

Attributes:

tense(chase, past)
subscript-TAG(chase, .v-d)
pos(chase, verb)

pos(., punctuation)
subscript-TAG(snake, .n)
pos(snake, noun)
noun_number (snake, singular)
definite-FLAG(cat, T)
subscript-TAG(cat, .n)
pos(cat, noun)

noun_number (cat, singular)
pos(a, det)

pos(the, det)

SRelEx was originally designed and implemented by Mike Ross and Ben Goertzel, but has
since been heavily modified by others, including Linas Vepstas, Ruiting Lian, Ben Goertzel
and Alex van der Peet



Via the action of RelEx, many equivalent verb-frame argument assignments
are mapped to identical or graphically homomorphic representations. This pro-
vides a certain degree of semantic normalization. For example, comparing

The cat chased a snake.
A snake was chased by a cat.

both sentences share the following RelEx dependencies:

_subj(chase, snake)
_obj(chase, cat)

Broadly speaking the output of RelEx somewhat resembles that of the Stan-
ford parser [AMMMOG6]; and there is a Stanford-format output mode, that out-
puts RelEx relations in a format similar to that of the Stanford parser. More
commonly used, however, is the output format that produces OpenCog ” Atom-
ese” that can be loaded into the OpenCog system for further processing, includ-
ing transformation into logical relationships via the RelEx2Logic system.

2.3.2 RelEx2Logic

The core idea of RelEx2Logic, operationally, is to map RelEx relationships into
logical semantic interpretations (i.e. PLN logical expressions) via applying a
core set of simple rewrite rules, along with more complex post-processing rules
(which deal with various aspects of complex sentences, and also with semantic
issues such as the concept-instance distinction).

The representation of RelEx2Logic rules utilizes OpenCog’s Atomspace rep-
resentation [GPG14b], in which various formal systems are given common ex-
pression as weighted, labeled hypergraphs. In the Atomspace representation,
both link parses, PLN predicate-logic expressions and type expressions are rep-
resented as hypergraphs with particular node and link types, which are reviewed
e.g. in [GPGI4al [GPGI4b][] PLN’s truth value objects are then represented
as weights on certain nodes and links; and may alternately be represented as
hypergraphs themselves (since e.g. there are NumberNodes representing num-
bers, and ListLinks representing links, so that a number-list like (.9, 5) can itself
be represented as a node-and-link structure).

Each of the core RelEx2Logic rewrite rules takes as input a subgraph of a
syntactic parse graph (representing RelEx output) satisfying certain constraints,
and outputs an Atom hypergraph. In practice the rules required generally take
the form of pairs (G, A), where

e (G is a graph whose nodes are either words or variables, and whose links
are RelEx relationship types

e A is a hypergraph whose nodes are either words, variables or special lin-
guistic nodes (drawn from a small vocabulary of such), and whose hyper-
edges are OpenCog Atom types (e.g. InheritanceLink, EvaluationLink).

7 see also http://wiki.opencog.org/w/AtomSpace
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e The lists of variables in G and A must be the same

In a RelEx2Logic context, rules matching this description are called ”simple
mapping rules.”

For the simple mapping rules actually needed for handling human language,
the constraint that each edge in G maps into a single hyper-edge in A
appears to hold true. Mathematically, this latter constraint implies that each
of the rewrite rules is individually a graph homomorphism [Vol09], which
then implies that a collection of rewrite rules applied together is also a graph
homomorphism. Categorically, this observation is important because it makes it
simple to consider the mapping from link parses to PLN expressions via RelEx
and RelEx2Logic as a morphism between the category corresponding to link
parses and the category corresponding to PLN expressions.

A simple example of such a rule is (G, A) where

G = {-subj(v1,v2), -0bj(v1,v3)}

A = (EvaluationLink vy ve v3)

This maps a verb v; with subject vy and object vs into an OpenCog Eval-
uationLink with v; as the predicate and (vs,v3) as the argument list. Of
course, most rules are more complex than this; see http://wiki.opencog.
org/w/RelEx2Logic_rules| for the rule-based in use in early 2016.

The application of this simple example mapping rule to ”The cat chased a
snake” yields the primary output ﬁ

EvaluationLink
PredicateNode chase©@3453432
ListLink
ConceptNode cat@1243546464
ConceptNode snake@564636322

Here e.g. ”chase@3453432” refers to a specific instance of the general predicate
”chase”.

This ”primary output” is only a small fraction of the total set of Atoms
created in the OpenCog Atomspace upon interpretation of this sentence; but it
communicates the crux of what’s going on. In more standard notation, what
this means is just

chase@3453432(cat@1243546464, snake0564636322)

— but the OpenCog Atomspace hypergraph notation is more explicit, expanding
the evaluation relationship into its own hypergraph link, and explicitly identi-
fying the type of each entity.

8For a formal explication of the OpenCog Atomese notation used in this and further ex-
amples, see [GPG14a]
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2.3.3 A Type-Theoretic View of Syntax to Semantic Mapping

One may also view this sort of mapping in terms of type theory. For instance,
if we map ”dogs bark” into

EvaluationLink
PredicateNode "bark"
ConceptNode "dogs"

then we are in effect assigning ”dogs” to the type T corresponding to

EvaluationLink
PredicateNode "bark"
ConceptNode $X

with free variable $X .
Categorically, the arrow

(ConceptNode $X)
——>

(EvaluationLink (PredicateNode "bark") (ConceptNode $X))

corresponds to this type expression.

The symmetry of the algebra of logic here consists in the fact that it is not
”dog as it connects to the left” or ”dog as it connects to the right” that belongs
to this type T, it is just plain old ”dog”.

Dependent Types and Anaphora . Dependent types come in here when
one has semantic mappings that are left unresolved at the time of mapping.
Anaphora are a standard example, for instance sentences like ” Every man who
owns a donkey, beats it” [Bek14]

The point here is that we want to give "beat” a type of the form

EvaluationLink
PredicateNode "beat"
ListLink

SomeType $y
SomeType $z

where then the type of $y is the type of men who own donkeys, and the type of
$2 is the type of donkeys. But the rule for parsing ”beats it” should be generic
and not depend on the specific types of the subject and object of ”beats,” which
will be different in different cases.

In accordance with the above ideas, the output of this semantic mapping
framework, given a sentence, can be viewed as a set of type judgments, i.e. a
set of assignations of terms to types. []

The case of ”Every man who has a donkey, beats it” illustrates that in order
to get compositionality for formally odd but commonsensically natural sentences

9Recall that categorically, assigning term t to type T' corresponds to an arrow to! : I' — T
where ! is an arrow pointing to the unit of the category and I is the set of type definitions of
the typed lambda calculus in question, and o is function composition.

11



like this, you want to have dependent types in your lambda calculus at the logic
end of your mapping.

2.3.4 Reconceptualizing Linguistic Compositionality

One philosophically nice observation here is that: In this framework, Frege’s
”principle of compositionality” corresponds to the observation that there is a
morphism from the asymmetric monoidal category corresponding to link gram-
mar, into the symmetric locally cartesian closed category corresponding to
lambda calculus with dependent types.

This principle means that, in a certain sense, you can get the meaning of a
linguistic whole (e.g. a sentence) by combining the meanings of the linguistic
parts (e.g. the words or phrases). However, this must be interpreted carefully.
Of course, the set of mental associations of a combination of several linguistic
parts, may very prominently feature some entity, even if that entity exists only
dimly as a mental association of any of the individual parts. However, never-
theless, for something to exist as an association of a linguistic combination, this
thing must exist at least dimly as an association of each of the parts.

The key subtlety here has to do with the propagation of probability values
(e.g. probabilities of association between linguistic and nonlinguistic structures)
through the algebra of logic, as reviewed extensively in [GIGHOS]. Linguistic
structure maps into crisp logical structure, and sometimes provides guidance
as to probability values to be attached to logical terms and relationships; but
cognitive associations of logical terms and relationships often have much finer
grained probability values, which then propagate through linguistic parts and
wholes, sometimes giving the logical cognate of a a linguistic whole a proba-
bility value that cannot be calculated from the probability values of the logical
cognate of the linguistic parts, without consideration of a great deal of addi-
tional cognitive content. Furthermore, In many cases, two statements that are
equivalent in crisp logic, may end up with different probabilistic truth values
if one considers probability values attached to the atomic entities in the state-
ment, and then uses heuristics to estimate the probability value of the overall
statement — because of imprecision in the heuristics involved.

2.4 Generation as Reverse Comprehension

One elegant effect of formalizing language comprehension as we have done, is
that it becomes straightforward to model language generation as the reverse of
language comprehension.

At the highest level, language generation may be broken down into three
stages: macroplanning, microplanning and surface realization [GPG14al [GPGI14b,
JMO09, RD00]. Macroplanning is overall discourse management; microplanning
deals with breaking down fairly small-sized chunks of semantic content into
sentence, inserting anaphora, word choice, and so forth. Surface realization
deals with mapping semantic structures into syntactic structures, where in the
overall generation pipeline it is fed semantic structures chosen and formed by

12



macroplanning and microplanning. It is surface realization that we will model
here as the reverse of the syntax-to-semantics mapping operation that occurs in
language comprehensions.

In the OpenCog system, the SuReal surface-realizer component takes small
collections of Atoms, selected by the OpenCog microplanner, and transforms
them into Atoms corresponding to English sentences to be uttered to a human
conversation partner or application user.

Very broadly speaking, what the SuReal algorithm (described in [LGL™10],
with its previous name SegSim, and with attention to its cognitive neuroscience
motivations; and described in a more current way in E) is doing is simply to
reverse the various graph and hypergraph rewrite rules described in the previ-
ous sections on RelEx and RelEx2Logic. However, this is not entirely simple,
because the rules create homomorphisms rather than isomorphisms. Any one
Atom structure may be produced by many different link-grammar structures,
because there are many grammatical ways to produce any given idea. But not all
the grammatical structures corresponding to different subsets of a given Atom
set needing articulation, will necessarily be grammatically compatible with each
other. So one has a constraint satisfaction problem, which in general will have
multiple solutions, with varying levels of syntactic ambiguity and subjective hu-
man naturalness. The SuReal algorithm represents a heuristic approach to this
problem.

More precisely, suppose we have an Atom set A = {A;}; and let R = {R;}
denote the set of all graph rewrite rules ; with the property that R; maps at
least one link parse subtree into some nonempty subset of {A;}. Let R' € R
denote the set of rewrite rules that produce an Atom set including the particular
Atom A;; we may write R = {R}}, with R = [J; R". Let my(r) denote the
proposition that the rewrite rule » matches some subgraph of the graph g.

Given this set-up, the problem of generating a sentence expressing the Atom
set A boils down to finding some link parse g that

e parses correctly according to link grammar

e satisfies the expressiveness condition

/\\\/7ny(112%
ik

e satisfies an assumed ”aesthetic condition”, initially: that it would either
not parse or not satisfy the expressiveness condition if any of its words
were removed

Given a link parse g, producing the relevant sentence is trivial. The task of
generating a sentence-set expressing A reduces to choosing a way to partition
A into subsets, so that each can be acceptably expressed via a single sentence.

1Ohttps://github.com/opencog/opencog/tree/master//opencog/nlp/sureal
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From Language to Logic and Back Again In sum, we have seen that
significant aspects of natural language comprehension can be modeled in terms
of mappings from syntax into logical semantics, which can be viewed in terms
of morphisms from the asymmetric monoidal category of grammar (as modeled
in pregroup grammar, which is equivalent to link grammar), into the symmetric
locally closed Cartesian category of typed lambda calculus, which is the core of
logical inference (and if one adds appropriately quantified uncertain truth val-
ues, provides an extension of intuitionistic logic). Significant aspects of natural
language generation can be viewed in terms of tracing these morphisms in the
opposite direction; though other aspects, such as pragmatics oriented micro and
macro planning, need to be dealt with using broader sorts of inference.

3 A Categorial View of Spatiotemporal Percep-
tion

The cognitive value of language lies largely in its ability to reflect the structure
of non-linguistic domains of experience, in ways that are amenable to flexible
manipulation and communication. This ability can be modeled via constructing
mappings between these non-linguistic domains and logic, which then via com-
position automatically results in mappings between these nonlinguistic domains
and language. Here we illustrate this point via the example of spatial structure,
a relatively simple but highly important nonlinguistic domain.

The mathematical structures used to represent syntactic structure in pre-
group and link grammar, can with slight extension be used to represent spa-
tiotemporal structure in sensory data as well. The key concept here is that of an
"image grammar” |[Nod1l] — a system of habitual arrangements of visual forms.
For instance, an image grammar regarding human faces would contain prob-
abilistic rules to the effect that "an eye usually occurs next to another eye”,
"eyes normally occur above a nose”, etc. The notion of an image grammar
can be extended to that of a ”3D movie grammar”, i.e. a system of habitual
arrangements of 3D patterns that may change over time in specific ways.

One can then look at morphisms from the product of these inferred image
grammars, into the typed lambda calculus. These morphisms map the gram-
mar of spatiotemporal forms, into the algebra of logic. Depending on the spatial
grammar relationships involved, this may provide a significant degree of sim-
plification and normalization. For instance the logical relations near(z,y) or
next_to(z,y) each summarize a variety of different particular spatial relation-
ships.

In the following we explore some restricted cases in which the formalization
of these ideas is especially concise.

3.1 Region Connection Calculus

To make our discussion of the mapping between linguistic and spatial structure
maximally concrete, we will initially focus attention on a small set of spatial
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relationships that are particularly straightforward to formalize. After treating
the issues in this context, we will then generalize.

We will first consider general-purpose relationships between spatial regions.
One can straightforwardly model three types of relationships between spatial re-
gions: topological, directional and metric. Here we will focus on the topological
aspect.

The most popular calculus dealing with topology is the Region Connection
Calculus (RCC) [RCC93], relying on a base relationship C (for Connected) and
building up other relationships from it, like P (for Part0f), or 0 (for Overlap).
For instance P(X,Y'), meaning X is a part of Y, can be defined using C as follows

P(X,Y) iff VZ € U,0(Z,X) = C(Z,Y)

where U is the universe of regions. RCC-8 models eight base relationships, see

O0I00ICR0

DC(X, Y) ECX.Y) TPP(X,Y) NTPP(X,Y)
PO(X,Y) EQ(X,Y) TPPi(X,Y) NTPPi(X,Y)

Figure 1: The eight base relationships of RCC-8

It is also possible, using the notion of convexity, to model more relationships
such as inside, partially-inside and outside; this is done in RCC-23 [Ben94].
RCC-3D extends the RCC framework to relationships between 3D regions [ALSM10].
An extension to simple closed regions of 4D spacetime can be constructed
straightforwardly as well; the mathematical relationships involved are essen-
tially independent of dimension.

3.2 Allen Interval Algebra

The RCC can be viewed as an extension to higher dimensions of the Allen
interval algebra, which describes the simple spatial relationships between 1D
closed intervals. Figure [2] illustrates the relationships characterizing Allen in-
terval algebra; these are crisp in nature, but uncertain variations have also been
articulated [GNO2].
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Conceptually, the Allen interval algebra relations can be viewed as analogous
to RelEx relationships. They are symmetric, even though the direct relations
between specific intervals in the 1D line have an obvious left-right asymmetry
(just as the symmetry of RelEx relations abstracts away the asymmetry of word
positions in natural language productions).

The relationship between linguistic grammar and spatiotemporal grammar
may be particularly easy to see in the context of Allen interval algebra. Once can
view the Allen interval algebra relationships as abstractions of an underlying link
grammar type layer, whose link types correspond to pairs of the form (object
category, basic interval relationship). The basic interval relationships needed
are three in number: ”overlaps”, 7abuts”, ”gap between” (O, A and G if we
wish).

3.3 Basing Image Grammars on RCC and Interval Alge-
bra

We can use RCC and Allen interval algebra to formulate a type of image gram-
mar, patterned on the link grammar framework, where each type of visual entity
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in the image grammar gets a dictionary entry composed of connectors of vari-
ous types. Each connector type is constructed based on joining an RCC/Allen
relationship type with a unique identifier associated with the visual entity type,
and optionally with a coordinate-axis type (e.g. horizontal or vertical or fron-
t/back). To have a concrete syntax, we can define a connector type label as
having one of the forms

entity-type-identifier_axis-identifier_topological-relation-identifier _signum

(where signum is either + or -).

So for instance, if we want to say that an eye should have another eye to
either the left or to the right of it, we would say that the image grammar
dictionary entry for the visual entity type Eye has a disjunct of the form

eye_h_G+ V eye_h_G-

Here the entity type is "eye”, the coordinate axis identifier is h (horizontal),
the topological relationship identifiers is G (”gap between” from Allen interval
algebra), and the directionality of the relationship may be either right (+) or
left (-). This means that each instance of Eye must have another instance of
Eye involved in a ”gap between” (G) relationship with it, either to the right or
to the left, along the horizontal (h) axis.

Supposing there must be a nose below an eye, we could then also say that
in the dictionary entry corresponding to Eye, there would be a disjunct of the
form

eye-nose_v_G-

(a link of type eye-nose_v_G, meaning ”from eye to nose”, extending to the
right along the vertical axis, meaning down), whereas in the dictionary entry
corresponding to Nose, there would be a disjunct of the form

eye-nose_v_G-+

(alink of type eye-nose_v_G extending to the left along the vertical axis, meaning
up). A more complex dictionary entry for Eye could specify

(eye_h_G+Aeye-nose_v_G-Aeye-nose_h_G+)V(eye_h_G-Aeye-nose_v_G-Aeye-nose_h_G-)

, which specifies that if the Eye is a left eye, then the nose occurs to its right;
and if the Eye is a right eye, then the nose occurs to its left; but in either case,
the nose occurs below the eye. De Morgan’s identities let us expand this into
conjunctive normal form so it looks like an ordinary link grammar entry.

3.4 Inferring Image Grammars from Deep Learning Net-
works

In a prior paper [GSO13]|, one of the authors and his colleagues have shown it is
possible to infer image grammars from images by way of deep learning computer
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vision systems. Specifically, in this work, a frequent subtree miner is used to
recognize probabilistically significant patterns in the states of the DeSTIN deep
neural net algorithm applied to recognize patterns in 2D images. |E|

In the DeSTIN system used there, the 2D input image is partitioned into a
quadtree, with each quadtree region corresponding to a ?DeSTIN node.” Each
of these nodes contains K clusters, where the clusters comprise elements of a
local pattern dictionary, where the dictionary is learned dynamically as part of
the DeSTIN algorithm. The state of the DeSTIN network at each point in time
then consists of a quadtree with each node labeled with an integer in the range
1...K (the most prominent pattern from the dictionary in that node at that
point in time).

Frequent patterns among these labeled quadtrees are then conjunctions such
as "label 4 at node (1,1) on layer 1 AND label 5 at node (1,2) on layer 2”. For
instance, if DeSTIN is fed characters, these frequent patterns will correspond to
common geometric components of characters, such as ascenders or curves. The
common relations among these geometric components form an image grammar
defining the structure of characters, including grammatical rules corresponding
to observations like ”a vertical ascender sometimes occurs (horizontally) adja-
cent to a circle” In standard OpenCog Atomese notation, this would be written
as a relation like:

EvaluationLink <.5,.9>
PredicateNode "adjacent"
ListLink

ConceptNode "pattern_2
ConceptNode "pattern_7"

where pattern_2 refers to ”vertical ascender” and pattern_7 refers to semicircle.
Each of these ConceptNodes would then be linked to an AndLink joining Pred-
icateNodes describing the labels at various nodes of the DeSTIN hierarchy. In
the link grammar notation used here, this would instead be notated by putting

pattern-7_h_EC+ V pattern-7_h_EC-

in the dictionary entry of pattern-2 (using the EC label for ”adjacency”, from
the RCC); and putting

pattern-2_h_EC+ V pattern-2_h_EC-

in the dictionary entry of pattern-7.

The same basic approach can be taken if one has a DeSTIN-like deep neural
network corresponding to 3D space, or 3D space + 1D time. For instance,
in a 3D implementation of the DeSTIN algorithm [ARC09], there is a "node”
corresponding to each node in an octree tiling a certain region of 3D spacetime.
If one replaces the clustering in the standard DeSTIN with other algorithms

11While the formalism of image grammar was not explicitly used in this prior paper, the
geometric relations inferred among these frequent patterns were clearly equivalent to an image
grammar.
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such as denoising autoencoders or other neural networks (a strategy we are
taking in our current research work), the logic regarding pattern mining and
image grammar remains the same.

3.5 Connection with Symbolic Dynamics

Extending the ideas from [GSO13]| a little further, patterns in the states of deep
neural networks may be viewed as a special case of something more general and
subtle. Recall ”symbolic dynamics” [MH38] — wherein one can discretize the
state space of any dynamical system, and then represent each of its trajectories
as a word in the language for which the discretization-cells of the state space
are the elements of the alphabet. Using this tool one can, for example, map a
recurrent neural network into a symbolic system via expressing the trajectories
of the network (during fixed, e.g. equally-spaced, time-intervals) as expressions
in a formal grammar.

In general, however, figuring out the right way to discretize the states of a
general recurrent neural network, so as to get the simplest and most inference-
amenable grammar from the symbolic dynamics, is a tough problem. Having
a specific structure to one’s neural network, as is the case with deep neural
nets whose structure reflects that of regions of spacetime, makes things simpler
because it tells one how to discretize the state space

In a recurrent deep neural network with spatiotemporal structure and sig-
nificant top-down as well as bottom-up information flow (such as a DeSTIN
network recognizing patterns in videos and incorporating feedback connections
from parent nodes to child nodes), a recurring pattern of activity across multi-
ple regions in the network will often be be a persistent transient in the system’s
dynamics (in some cases it could be a strange attractor or, say, a terminal at-
tractor [Zak89]). So identifying the discretization-cells of the state-space of the
network, with combinations of discretized-states of regions of the network cor-
responding to localized regions of spacetime, will often work and capture most
of the cognitively important structure. The partitioning problem is solved by
the network’s design.

4 Symbol Grounding as Chaining of Morphisms

Given the mappings from natural language to logic, and spatiotemporal struc-
ture to logic, that we have outlined above, it is now straightforward to articulate
a mapping from linguistic to spatiotemporal structure (and back) via logic. We
will then see afterwards how a similar approach can be taken with actions,
parallel to our treatment of visual perception.

A key feature of this mapping is the more symmetric nature of the structure
of logic, as compared to the more fundamentally asymmetric structures of lin-
guistic and spatiotemporal relationships. The mappings from language to logic,
and spacetime structure to logic, involve reducing concision while increasing
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symmetry. In the more symmetric realm of logic, parallels between linguistic
and spatiotemporal structure are easier to represent.

4.1 A Specific Example: Partial Overlap

To understand the relationships involved here fully, let’s take a look at the
example of the RCC ”partially overlaps” relationship, PO(x,y). In English the
straightforward way to say this is ”x partially overlaps y”. Of course there
are more idiomatic ways of saying this, and there are also complexities related
to ambiguity — e.g. ”x overlaps y” would normally be understood to imply
”x partially overlaps y” to a certain probabilistic degree. But for illustrative
purposes we can stick with the simplest case.

The link parse for ”x partially overlaps y” looks like (inserting the concrete
words ”Jack” and ”Jill” for x and y, for simplicity).

F———— -— -Xp-- ———
e ettt SWV-—————m———— >+ |
| Fo——————- Ss———————- +

[
+-—=Wd--—+ +mmm—m E--——+---0s--—+ |
[

I [ I I I
LEFT-WALL Jack.b partially overlaps.v Jill.f .

and the link parse for "y is partially overlapped by x” looks like

+————- -—- -—Xp-—-————————————————— +
Fomm SWV-———————m - >+ |
| oo Py———————- + |
+-—-Wd---+--Ss-+ o E-———- +-—-MVp--+-Js—+ |

[

I I [ I | I I
LEFT-WALL Jill.f is.v partially overlapped.v-d by Jack.b .

The RelEx output for these two cases is identical,
Dependency relations:

_obj(overlap, Jill)
_advmod(overlap, partially)
_subj(overlap, Jack)

Attributes:

tense(overlap, present)
penn-P0S (overlap, VBZ)
pos(overlap, verb)
pos(., punctuation)
gender (Jill, feminine)
definite-FLAG(Jill, T)
penn-P0S(Jill, NN)
person-FLAG(Jill, T)
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pos(Jill, noun)

noun_number (Jill, singular)
penn-POS(partially, RB)
pos(partially, adv)

gender (Jack, person)
definite-FLAG(Jack, T)
penn-P0S(Jack, NN)
person-FLAG(Jack, T)
pos(Jack, noun)

noun_number (Jack, singular)

as is the RelEx2Logic output,

InheritancelLink
ConceptNode "partially@196c"

ConceptNode "partially"

ImplicationLink
PredicateNode "overlaps@5d9c"
PredicateNode "overlap"

InheritancelLink
SatisfyingSetLink

PredicateNode "overlaps@5d9c"
ConceptNode "partially@196c"

InheritancelLink
ConceptNode "Jill@0Ocd"

ConceptNode "Jill"

EvaluationLink
DefinedLinguisticPredicateNode "definite"
ListLink

ConceptNode "Jill@0Ocd"

InheritancelLink
ConceptNode "Jack@6725"

ConceptNode "Jack"

EvaluationLink
DefinedLinguisticPredicateNode "definite"
ListLink

ConceptNode "Jack@6725"

EvaluationLink
PredicateNode "overlaps@5d9c"

ListLink
ConceptNode "Jack@6725"
ConceptNode "Jill@0Ocd"

EvaluationLink
PredicateNode "overlaps@5d9c"

ListLink
ConceptNode "Jack@6725"

InheritancelLink
InterpretationNode “sentence@GOeS_parse_O_interpretation_$X"
DefinedLinguisticConceptNode "DeclarativeSpeechAct"

InheritancelLink
SpecificEntityNode "Jill@0Ocd"
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DefinedLinguisticConceptNode "female"
InheritancelLink
SpecificEntityNode "Jill@0O0cd"
ConceptNode "Jill"
InheritancelLink
PredicateNode "overlaps@5d9c"
DefinedLinguisticConceptNode "present"

On the other hand, the direct rendering of the RCC relationships PO(z,y)
into Atomese looks like

EvaluationLink
PredicateNode "RCC_Partial_Overlap"
ListLink
ConceptNode $x
ConceptNode $y

and it is easy to see that the equivalence

LambdalLink
VariableNode $x, $y
Equivalencelink <s,c>
ANDLink
EvaluationLink
PredicateNode "overlaps"
ListLink
$x
$y
InheritancelLink
SatisfyingSetLink
PredicateNode "overlaps"
ConceptNode "partially"
Equivalencelink
EvaluationLink
PredicateNode "RCC_Partial_Overlap"
ListLink
$x
$y

isomorphically maps the RCC_partial_overlap relation into the RelEx2Logic out-
put from the linguistic form ”partially overlaps.”
Note that this EquivalenceLink uses e.g.

Inheritancelink
SatisfyingSetLink
PredicateNode "overlaps"
ConceptNode "partially"
whereas the RelEx2Logic output cited uses

InheritancelLink
ConceptNode "partially@196c"
ConceptNode "partially"
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ImplicationLink
PredicateNode "overlaps@5d9c"
PredicateNode "overlap"
InheritancelLink
SatisfyingSetLink
PredicateNode "overlaps@5d9c"
ConceptNode "partially@196c"

However, the former follows from the latter via a few simple and obvious steps of
inference, which the PLN logic engine can carry out unproblematically; so it is
fair to consider the former as directly implied by the RelEx2Logic output. If one
does a minimal amount of forward-chaining PLN inference on the RelEx2Logic
output, when running OpenCog, then one will obtain the former as part of the
resulting Atom-set.

If the truth value on the EquivalenceLink is < s,¢ >=< 1,1 >, then we have
a pure mathematical tautology with a truth value of unity. On the other hand,
if there is some ambiguity on the natural language side of the equivalence, then
the truth value may be less than unity in strength s or confidence c¢. This would
be the case if there was a possibility of the construct headed by the ANDLink
actually having some other interpretation. In that case, the mapping would
be correct, but only under one of the possible interpretations of the ambiguous
natural language predicates ”overlaps” and ”partially.”

In general, the RelEx2Logic subsystem, in OpenCog, attempts to remove all
ambiguity regarding the logical structure of a natural language utterance, i.e.
meaning the shapes of the Atomspace hypergraphs representing its interpreta-
tion, and the labels of the nodes in these hypergraphs. However, it does not seek
to remove all ambiguity regarding the meanings of the labels of the nodes in
the Atomspace hypergraphs it outputs. Reducing and otherwise managing this
kind of ambiguity is also important for linguistic cognition, but in the OpenCog
framework is intended to be handled via other processes such as PLN inference
based on data induced from language and experience.

4.2 RCC Maps Morphically onto a Subset of English

One clear and simple way to look at the morphism between RCC and natural
language is to consider a subset of English consisting of the words in the RCC
descriptors

disconnected

externally connected

equal

partially overlapping
tangential proper part
non-tangential proper part

, plus the word ”region,” the positive integers, and the connecting words

is
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with
from
to

not
or

Suppose we call this subset of English ”Minimal RCC English.” In Minimal
RCC English, one can say things like

Region 5 is a non-tangential proper part of Region 7
Region 7 is not equal to Region 6
Region 6 is partially overlapping with Region 55
Region 3 is equal to Region 7,

and Region 7 is externally connected with Region 9
Region 4 is equal to Region 5, and Region 5 is equal to Region 6
etc.

The link grammar dictionary entries corresponding to the words in Minimal
RCC English, and required to parse sentences in Minimal RCC English, may
collectively be called ”Minimal RCC English Link Grammar.” This does not
include, for instance, entries in the dictionary entry for "with” that are used
only to connect "with” with words not in Minimal RCC English.

It should be clear from the foregoing discussion that

myproposition 1 There is a morphism between the asymmetric monoidal cat-
egory corresponding to the Minimal RCC English Link Grammar, and the closed
cartesian category corresponding to the set of propositional relationships in the
RCC itself.

Obviously, the English articulation of a spatial relationship between two enti-
ties has more communicative value than the corresponding propositional RCC
formulation, in many contexts. However, the formal RCC version has the ad-
vantage of transparent connection to various inference rules, such as the RCC
multiplication table, as well as basic logical deduction which lets one conclude
e.g. that Region 4 is equal to Region 5, and Region 5 is equal to Region 6”
implies "Region 5 is equal to Region 6.”

The Minimal RCC English Link Grammar is a subset of overall English link
grammar, and the RCC’s propositional relationships can straightforwardly be
embedded in PLN (or any other moderately powerful logic), and hence consti-
tute a subset of the logic used by OpenCog or other Al logic formulations such
as FCG or Cyc. This proposition thus can be seen as formalizing a small subset
of the broader morphism between linguistic and logical structure.

To see how one might extend this basic proposition bit by bit, suppose we
added to our Minimal RCC English Link grammar:

e a set of nouns and adjectives for identifying visual entity types
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e the words ”"on” , ”"the”, ”"vertical”, "horizontal”, ”axis” , ”vertically”,
”horizontally”, ”related”

e terms for the Allen Interval Algebra relationships

e 7or” and "and” (to allow specification of multiple relationships associated
with the same entity type)

e a few uncertain qualifiers: ”often”, ”usually”, ”occasionally”
We may call this the Extended RCC/Allen English Link Grammar. Using
this slightly extended grammar, we can articulate sentences such as

A semicircle is often externally connected with
a vertical ascender, on the horizontal axis.

An eye is usually vertically related to a nose
with a gap between, or horizontally related to
a nose with a gap between

In this extended grammar, we can formulate English statements correspond-
ing to the concrete image grammar examples given above; and one has the
relationship

myproposition 2 There is a morphism between the asymmetric monoidal cat-
egory corresponding to the Extended RCC/Allen English Link Grammar, and
the closed cartesian category corresponding to: The set of propositional rela-
tionships between atomic terms, where each relationship has the form (verticalV
horizontal, right V left, R), where R is a label for either an RCC or Allen inter-
val algebra relationship. There is also a morphism between this closed cartesian
category, and the asymmetric monoidal category corresponding to the image
grammar outlined above, comprising a link grammar with link types of the form

entity-type-identifier_axis-identifier_topological-relation-identifier_signum

The limited subsets of English grammar we have identified above are both
highly constrained semantically, and highly awkward syntactically. It is clearly
straightforward to extend them to include more colloquial English, as well as
more types of spatial relationships, including geometric as well as topological
relationships, for example. In general, the broader morphism between linguistic
grammar and image grammar can be approximated via formulating additional
propositions similar to the above encompassing larger and larger subsets of En-
glish. It is not clear how useful the explicit articulation of such propositions is;
however, we present the example proposition above in order to concretely ex-
emplify the type of morphism between language and perception we are referring
to.
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5 Modeling Actions

Language may be grounded in actions as well as perceptions. To formalize this
one may introduce ”action grammars”, similar in concept to image grammars.

In the action context, one does not have a 4D spatiotemporal structure, but
rather has a higher-dimensional structure referred to as a configuration space or
C-space [MPAQ6]. For instance in a robot with 50 motors, one might have a 150
dimensional space corresponding to the 3 degrees of freedom of each motor. A
specific movement corresponds to a trajectory over time in configuration space.

There are many different ways to model complex movements; here we will
briefly describe a hierarchical and compositional approach, which leads naturally
to a grammatical model of movement. In this approach, a complex movement
is represented as a combination of simpler movements, where each movement
corresponds to a trajectory over time in some subspace of C-space.

A movement-type or ”animation” corresponds to a set of movements, parametrized
by a certain set of k (normally real number) parameters. In the simplest case
these parameters are each restricted to some interval. In a more complex case,
there is some recognizer function, mapping R* into 0,1, indicating when a
k — tuple is a legal parameter vector for that movement type. Example ani-
mations would be a walking gait, a running gait, a "reaching” arm movement,
ete.

Many animations are composed via combining simpler animations corre-
sponding to subsets of actuators. So e.g. a reaching arm animation may be
decomposed into a ”shoulder + elbow reaching” animation and a ”wrist + hand
reaching” animation. A "hand reaching” animation may be decomposed into a
number of ”finger reaching” animations. Much as an object-type or object-part
in vision corresponds to a pattern of organization of percepts that is observed
repeatedly; similarly, an animation corresponds to a pattern of organization of
actuator movements that is enacted repeatedly.

Furthermore, the set of parameter-vectors allowed for a particular anima-
tion, may often be partitioned naturally into a collection of discrete cells. For
instance, one can reach forward, backward, up or to the side. Martial arts dis-
ciplines categorize "kicks” into a refined collection of discrete categories. These
cells may be considered to constitute animations in themselves (in this case one
has multiple animations regarding the same set of actuators).

In the hierarchical model we are pursuing here, a specific movement is iden-
tified with a set of animations, each beginning at a particular time-offset from
the initiation of the movement. At any given moment in time, a number of
animations may be current. The grammar of these animations, then, resembles
a natural language in having a natural sequential order, but differs in terms
of the presence of concurrency. Movement grammar is much like the grammar
one would expect to find in the language of a creature with a large number of
mouths, which could easily utter multiple words at the same time.

To model movement grammar using link grammar formalism, one can intro-
duce link types of the form A_rsignum where A is an animation label, and r is
an Allen interval algebra relationship. So for instance, to express the fact that
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moving one’s lower leg back is often the first part of a ”kick forward” action,
one would add the entry

kick-lower-leg-forward_a+
to the dictionary entry formove-lower-leg-back. This indicates that a
move-lower-leg-back
action often occurs, in relation to a
kick-lower-leg-forward

action, in the Before (leftmost) slot of an Adjacency (”a”) relationship.

The ”no links cross” constraint, in an action grammar context, corresponds
essentially to the declaration that a pair of coordinated animations usually relate
in an asymmetric way, so that the dependency between two animations often
has a direction in which one is ”parent” and the other ”child”, and two anima-
tions with different parents do not depend directly on each other. If one has
directional dependency relations, then as Hudson shows in a Word Grammar
context, a simple landmark transitivity rule leads to a no-links-crossing con-
straint (and a more complex landmark transitivity rule, involving landmarks
that are not always parents, leads to a slightly looser constraint) [Hud10].

While this requires further study, we have found in the course of our practical
robotics work that in the vast majority of everyday movement patterns, there
is a directional parent-child relationship between each pair of animations. For
instance, while playing the piano, the "heads” of the animation structure are
the hands (for the keyboard) and feet (for the pedals). The other parts of the
body move in ways that are guided by the hand and foot movements. In effect,
then, the overall body movement of piano-playing is parsed into four phrases,
for the two hands and two feet. There are then connections between the heads
of these phrases, i.e. the two hands must coordinate with each other, and the
hands and feet must coordinate with each other. But, for instance, the right
elbow and left elbow, or the right shoulder and the right knee, do not need to
coordinate with each other independently of the hands and feet (if they did,
then it would be hard to avoid a ”link crossing” situation).

However, it is not clear whether this directional parent-child relationship
holds uniformly for all movement patterns that people enact. Based on a rough
analysis it seems to hold generally for yoga poses; e.g. in the tree pose one
focuses on one’s spine and other body parts are understood to be arranged
relative to the spine; in the plank pose the focus is on the core and the feet,
which are therefore the "heads” of the animation phrases constituting the overall
pose (see [Mar99] for an effort at formalization of yoga postures, which gives a
precise way to represent this sort of idea).

But modern dance can be quite complex and might contain various excep-
tions to the no-links-cross constraint, involving tangled relationships instead.
Various formal notations for describing dances exist; some, like Labanotation

27



[HG70L [HHO3], are extremely elaborate and detailed. Via statistically analyzing
multiple dances that have been formalized in Lacanotation, one might infer a
formal dance grammar, and could then see if indeed a ”no links cross” constraint
is obeyed. It has already been noted that some fairly simple forms of dance such
as the foxtrot [Haw(2] or aerobic exercises [Coo81] can be modeled using simple
grammars; but more complex forms of dance may be a different story.

In general, it seems most sensible to view movement grammars as specify-
ing the overall structure of movements, and to assume that other processes not
conveniently specified in grammatical form are going to be used to tune the fine
details of movements. This may be considered analogous to the way the gram-
mar of spoken language determines what words to say, but then other processes
figure out the phonological specifics of speech production (and in fact this is
more than an analogy, since speech production is also a motor activity carried
out via coordination of various muscles in the face). Regardless of the directions
of the dependency relationships in the grammar of animations involved with a
movement, the fine-tuning of all the animations involved in a movement is go-
ing to involve (explicit or implicit) solution of a system of equations involving
parameters of all the different animations.

So for instance, in the piano-playing example, the role of the hand-animations
as the heads of the ”arm-animation” phrases, means that for a first approxima-
tion, one can figure out what the hands need to do in a certain situation, and
then figure out what the elbows and shoulders should do accordingly. But still
this isn’t quite how it works, and would lead to awkward movement in some
cases. There is some dependency between what the shoulders do, resulting from
the close physical connection of the shoulders. In fine-tuning the body move-
ments of piano playing, the shoulders must directly coordinate, even though this
7crosses links” in terms of the overall animation grammar. Action grammars
are best viewed as providing high-level action plans that constitute guidance for
processes of real-time, fine-grained action control.

As with vision or language, the learning of a system of animations and sub-
animations suitable for complex real-world control is a complex problem. For
instance, one approach we are exploring in our own research is to co-evolve
a reinforcement-learning neural network with an hierarchical neural network,
so that the RL network (which is connected to actuators) learns movements
to achieve goals, and the hierarchical network models these movements as a
hierarchy of animations. The hierarchical network must be used to infuse the
RL network with candidate movement-patterns to try out in attempting to get
short-term reward.

However the learning is done, though, the result is a grammar of move-
ments, with the structure of an asymmetric monoidal category, which can then
be mapped morphically into the algebra of logic. If one articulates a Basic
Movement English Link Grammar involving

e some nouns and adjectives for use as names of movements

e words for Allen interval relationships
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e "do” and "done” to connote action

e the basic connecting words in the Extended RCC/Allen English Link
Grammar articulated above

then one can say things such as

Kicking the lower leg forward is often done
after moving the lower leg back.

Pushing the right foot down is done during
moving the left hand in chord D sharp minor

One then can articulate morphic mappings between the movement grammar
indicated above, and the set of Allen interval relationships between animation
labels, and the sentences of Basic Movement English Link Grammar. On a
formal level this exactly parallels the treatment of image grammar given above.

Morphing action into logic allows action to be morphed into perception,
spatiotemporal structure and other structures that can be similarly modeled.
Each of these morphisms captures the key structural information, but omits key
quantitative information — e.g. probabilities in logic, specific geometric patterns
of curves and shapes in vision, and specific quantitative parameters of motor
movement in action. But this is as it must be. Morphisms between different
domains allows general knowledge in one domain to propagate to other domains,
so that general knowledge becomes in a sense domain independent. But to turn
general knowledge propagated from another domain into specific knowledge,
domain-specific quantitative details must then be added.

If one puts together the basic perceptual and action oriented subsets of link
grammar identified above, one obtains sentences like

After my head is in back of a person,
kicking the lower leg forward at the person
is often done after moving the lower leg back.

Pushing the right foot down on the pedal,

is during the pedal being externally connected

to the right foot in the vertical axis, and during
moving the left hand in chord D sharp minor

The asymmetric monoidal category corresponding to the grammar of this
perception-action language, can be mapped morphically into the closed carte-
sian category corresponding to the set of logical propositions connecting the
animations and visual entity types referred to. This is a simple exemplification
of how logic can be used to glue together perception and action.

Looking at the above example sentences combining perception language and
action language, one notes that the syntax gets more complex, and the assumed
limitations of the vocabulary cause even more awkwardness than in the simpler
examples given before. It’s much nicer, in English, to say ”the right foot being
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on the pedal” rather than ”the pedal being externally connected to the right
foot in the vertical axis.” But the problem is that, in the former sentence, one
then has a tough disambiguation problem; one must map "on” into the RCC
relation EC.

Using the limited vocabulary specified, one has specific words and phrases
like ”externally connected” and ”vertical axis” that map directly into proposi-
tional relationships involving spatial and temporal topology. Natural language
achieves greater ease of expression via introducing greater ambiguity, which then
introduces greater complexity and uncertainty into the morphisms between lan-
guage, perception, action and logic. |E| But nevertheless, even if one expands
consideration to the full grammar of English or another natural language, with
all its complexities and ambiguities, the morphisms described here still exist;
they are just more lengthy and laborious to articulate in detail.

To highlight the subtlety of natural language ambiguity more explicitly, note
that ”the right foot being on the pedal” could conceivably refer to a small pic-
ture of a right foot being painted on a pedal. This is an unlikely interpretation
but it will be the correct one sometimes. So one has a situation where a certain
syntactic structure maps into more than one logical relational structure. This
does not break the morphic mappings described above, it simply means that
the morphism from language into logic is not an isomorphism. The same lin-
guistic construct may map into more than one different logical construct. Each
mapping has a certain probability associated with it, and there are complex
dependencies among the probabilities associated with different interpretations.
Estimating the interdependent probabilities associated with multiple ambiguous
linguistic constructs based on tractable heuristic approximations is a subtle and
difficult matter, and brings us beyond simple mappings between different do-
mains, and into the realm of generally intelligent language comprehension and
usage [GPGI4al [GPG14b], which is well beyond the scope of this paper.

6 Discussion and Future Work

The construction of practical systems for processing linguistic and spatiotempo-
ral data, and grounding the former in the latter, involves numerous complexities
due to the need to maximize pattern recognition accuracy within the scope of
limited computing resources. However, the abstract structure of the mappings
from linguistic and spatiotemporal structure to and from logic take a simple
and elegant form, which we have articulated here for the first time, building on
earlier practical and theoretical work. Similar mappings appear to exist in the
context of other cognitive domains such as action and vision, and many others.

Figure [3] provides a simple illustration of these ideas, showing how a simple
relationship (”Smile at Bob”) manifests itself as a combination of two sub-
relationships, in the four domains of perception, action, logic and natural lan-

12Lojban achieves concise expressions that are suitable for everyday informal human vocal
and written communication, and are also mathematically precise and simplistically mappable
into formal structures; but it lacks a sizeable community of speakers.
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guage. Morphisms between the different domains preserve the logic of the de-
composition into sub-relationships. Among other purposes, these morphisms
ground the linguistic construct ”smile at Bob” in relevant, morphically struc-
tured perceptions and actions; and abstract the linguistic construct into a pair
of logical representations denoting (key aspects of) its meaning.

:EvaluationLink
: PredicateNode “at”
ListLink
PredicateNode “smile”
ConceptNode “Bob”

;EvaluationLink
PredicateNode “smile”
ConceptNode “me”

Perception [* > Action

:after_non-adjacent(smile-99, face-15), FCC_x_axis

‘AL = turn head toward Bob’s location -
:A2 = turn eyes toward Bob's eyes

:smile-99 has dictionary entry: look-at_FCC-x_G+ §A3 = smile
:face-15 has dictionary entry: look-at_FCC-x_G-

iBefore_adjacent (A2, A1)
:Before_overlapping(A3,A1)

fook-al_FCCx ’—before-overlapping—‘
: smile-99 face-15 AL A3
‘is expressed ’—befare-adjacent_‘
T R A A
PredicateNode “possessive” 1 b L[
ListLink

ConceptNode “Bob”
ConceptNode “face_15"

‘Evaluation : Language
: PredicateNode “possessive”
ListLink P .

: SmileatBob
ConceptNode “me’ : B
ConceptNode “smile_99" :

+---Wi---+-MVp-+-J-+

: | | |
‘LEFT-WALL smile.v at Bob

Figure 3: Depiction of the relationship ”smile at Bob” as represented in the
languages of: logic, perception, action and natural language. In each case the
representation involves a combination of two parts. The arrows indicate mor-
phisms between the different domains; and each of these morphisms preserves
the relationship between the two parts involved in the relationship.

In the context of Al system design, the value of constructing systems whose
knowledge representations embody these abstract mappings, is that this can ease
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the design and implementation of learning and reasoning methods that span and
bridge the domains of language, spacetime and logic in a natural way, without
requiring a great amount of explicit bridging code. As an example, in the
OpenCog Al system, if we use Probabilistic Logic Networks (PLN) inference to
generalize from observed examples in either the linguistic or the spatiotemporal
domain, the mappings between language and spacetime via logic can be used to
propagate the uncertain generalizations from one domain to another. Concrete
elucidations of this propagation will be described in follow-up publications.
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